Orbital station-keeping

In astrodynamics, orbital station-keeping is keeping a spacecraft at a fixed distance from another spacecraft or celestial body. It requires a series of orbital maneuvers made with thruster burns to keep the active craft in the same orbit as its target. For many low Earth orbit satellites, the effects of non-Keplerian forces, i.e. the deviations of the gravitational force of the Earth from that of a homogeneous sphere, gravitational forces from Sun/Moon, solar radiation pressure and air drag, must be counteracted.

The deviation of Earth's gravity field from that of a homogeneous sphere and gravitational forces from the Sun and Moon will in general perturb the orbital plane. For a Sun-synchronous orbit, the precession of the orbital plane caused by the oblateness of the Earth is a desirable feature that is part of mission design but the inclination change caused by the gravitational forces of the Sun and Moon is undesirable. For geostationary spacecraft, the inclination change caused by the gravitational forces of the Sun and Moon must be counteracted by a rather large expense of fuel, as the inclination should be kept sufficiently small for the spacecraft to be tracked by non-steerable antennae.

For spacecraft in a low orbit, the effects of atmospheric drag must often be compensated for, often to avoid re-entry; for missions requiring the orbit to be accurately synchronized with the Earth’s rotation, this is necessary to prevent a shortening of the orbital period.

Solar radiation pressure will in general perturb the eccentricity (i.e. the eccentricity vector); see Orbital perturbation analysis (spacecraft). For some missions, this must be actively counter-acted with maneuvers. For geostationary spacecraft, the eccentricity must be kept sufficiently small for a spacecraft to be tracked with a non-steerable antenna. Also for Earth observation spacecraft for which a very repetitive orbit with a fixed ground track is desirable, the eccentricity vector should be kept as fixed as possible. A large part of this compensation can be done by using a frozen orbit design, but often thrusters are needed for fine control maneuvers.

For spacecraft in a halo orbit around a Lagrange point, station-keeping is even more fundamental, as such an orbit is unstable; without an active control with thruster burns, the smallest deviation in position or velocity would result in the spacecraft leaving orbit completely.[1]

  1. ^ Cite error: The named reference esa20090614 was invoked but never defined (see the help page).