Concurrency (computer science)

The "Dining Philosophers", a classic problem involving concurrency and shared resources

In computer science, concurrency is the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or at the same time simultaneously partial order, without affecting the final outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability of a program, algorithm, or problem into order-independent or partially-ordered components or units of computation.[1]

According to Rob Pike, concurrency is the composition of independently executing computations,[2] and concurrency is not parallelism: concurrency is about dealing with lots of things at once but parallelism is about doing lots of things at once. Concurrency is about structure, parallelism is about execution, concurrency provides a way to structure a solution to solve a problem that may (but not necessarily) be parallelizable.[3]

A number of mathematical models have been developed for general concurrent computation including Petri nets, process calculi, the parallel random-access machine model, the actor model and the Reo Coordination Language.

  1. ^ Lamport, Leslie (July 1978). "Time, Clocks, and the Ordering of Events in a Distributed System" (PDF). Communications of the ACM. 21 (7): 558–565. doi:10.1145/359545.359563. Retrieved 4 February 2016.
  2. ^ "Go Concurrency Patterns". talks.golang.org. Retrieved 2021-04-08.
  3. ^ "Concurrency is not Parallelism". talks.golang.org. Retrieved 2021-04-08.