Kokain - Cocaine.svg
Clinical data
Trade namesNeurocaine,[1] Goprelto,[2] Numbrino,[3] others
Other namesBenzoylmethylecgonine, coke, blow, crack (in freebase form)
AHFS/Drugs.comMicromedex Detailed Consumer Information
License data
Routes of
Topical, by mouth, insufflation, intravenous
Drug class
ATC code
Legal status
Legal status
Pharmacokinetic data
Metabolismliver CYP3A4
MetabolitesNorcocaine, benzoylecgonine, cocaethylene
Onset of actionseconds to minutes[11]
Duration of action5 to 90 minutes[11]
  • Methyl (1R,2R,3S,5S)-3-(benzoyloxy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate
CAS Number
PubChem CID
PDB ligand
CompTox Dashboard (EPA)
ECHA InfoCard100.000.030 Edit this at Wikidata
Chemical and physical data
Molar mass303.353 g·mol−1
3D model (JSmol)
Melting point98 °C (208 °F)
Boiling point187 °C (369 °F)
Solubility in water≈1.8
  • InChI=1S/C17H21NO4/c1-18-12-8-9-13(18)15(17(20)21-2)14(10-12)22-16(19)11-6-4-3-5-7-11/h3-7,12-15H,8-10H2,1-2H3/t12-,13+,14-,15+/m0/s1 checkY
Data page
Cocaine (data page)
 ☒NcheckY (what is this?)  (verify)

Cocaine is a tropane alkaloid and strong (SNDRI) stimulant made from coca leaves of one of four species of plant in the Erythroxylaceae family. It is frequently used as a recreational drug and euphoriant.[13] It may be snorted, inhaled as smoke, or dissolved and injected into a vein.[11] Mental effects may include an intense feeling of happiness, sexual arousal, loss of contact with reality, or agitation.[11] Physical symptoms may include a fast heart rate, sweating, and dilated pupils.[11] High doses can result in high blood pressure or body temperature.[14] Effects begin within seconds to minutes of use and last between five and ninety minutes.[11] Cocaine's medical uses include local numbing and reduced bleeding from the nasal mucosa during nasal surgery.[15]

Cocaine is addictive due to its effect on the reward pathway in the brain.[13] After a short period of use, there is a high risk that dependence or addiction will occur.[13] Its use increases the overall risk of death and particularly the risk of trauma and infectious diseases, such as blood infections and AIDS. It also increases risk of stroke, heart attack, cardiac arrhythmia, lung injury (when smoked), and sudden cardiac death.[13][16] Cocaine sold on the street is commonly mixed with local anesthetics, cornstarch, quinine, or sugar, which can result in additional toxicity.[17] With abstention from cocaine after chronic use, a person may have decreased ability to feel pleasure and be very physically tired.[13]

Cocaine acts by inhibiting the reuptake of serotonin, norepinephrine, and dopamine.[13] This results in greater concentrations of these three neurotransmitters in the brain.[13] It can easily cross the blood–brain barrier and may lead to the breakdown of the barrier.[18][19] In 2013, 419 kilograms were produced legally.[20] It is estimated that the illegal market for cocaine is 100 to US$500 billion each year.[13] With further processing, crack cocaine can be produced from cocaine.[13]

Cocaine is the second most frequently used illegal drug globally, after cannabis.[21] Between 14 and 21 million people use the drug each year.[13] Use is highest in North America followed by Europe and South America.[13] Between one and three percent of people in the developed world have used cocaine at some point in their life.[13] In 2013, cocaine use directly resulted in 4,300 deaths, up from 2,400 in 1990.[22] It is named after the South American coca plant from which it is isolated.[11] The plant's leaves have been used by Peruvians since ancient times.[17] In ancient Incan culture and in modern indigenous cultures of the Andes mountains, coca leaves are chewed, taken orally in the form of a tea, or alternatively, prepared in a sachet wrapped around alkaline burnt ashes, and held in the mouth against the cheek, and used to combat the effects of cold, hunger, and altitude sickness.[23][24] Cocaine was first isolated from the leaves in 1860.[13] Since 1961, the international Single Convention on Narcotic Drugs has required countries to make recreational use of cocaine a crime.[25]

  1. ^ Nordegren T (2002). The A-Z Encyclopedia of Alcohol and Drug Abuse. Universal-Publishers. p. 461. ISBN 9781581124040.
  2. ^ Cite error: The named reference Goprelto FDA label was invoked but never defined (see the help page).
  3. ^ Cite error: The named reference Numbrino FDA label was invoked but never defined (see the help page).
  4. ^ Ghodse H (2010). Ghodse's Drugs and Addictive Behaviour: A Guide to Treatment (4 ed.). Cambridge University Press. p. 91. ISBN 978-1-139-48567-8. Archived from the original on 10 September 2017.
  5. ^ Introduction to Pharmacology Third Edition. Abingdon: CRC Press. 2007. pp. 222–223. ISBN 978-1-4200-4742-4. Archived from the original on 10 September 2017.
  6. ^ "DEA / Drug Scheduling". Archived from the original on 9 August 2017. Retrieved 7 August 2017.
  7. ^ a b Fattinger K, Benowitz NL, Jones RT, Verotta D (July 2000). "Nasal mucosal versus gastrointestinal absorption of nasally administered cocaine". European Journal of Clinical Pharmacology. 56 (4): 305–10. doi:10.1007/s002280000147. PMID 10954344. S2CID 20708443.
  8. ^ Barnett G, Hawks R, Resnick R (1981). "Cocaine pharmacokinetics in humans". Journal of Ethnopharmacology. 3 (2–3): 353–66. doi:10.1016/0378-8741(81)90063-5. PMID 7242115.
  9. ^ Jeffcoat AR, Perez-Reyes M, Hill JM, Sadler BM, Cook CE (1989). "Cocaine disposition in humans after intravenous injection, nasal insufflation (snorting), or smoking". Drug Metabolism and Disposition. 17 (2): 153–9. PMID 2565204.
  10. ^ Wilkinson P, Van Dyke C, Jatlow P, Barash P, Byck R (March 1980). "Intranasal and oral cocaine kinetics". Clinical Pharmacology and Therapeutics. 27 (3): 386–94. doi:10.1038/clpt.1980.52. PMID 7357795. S2CID 29851205.
  11. ^ a b c d e f g Zimmerman JL (October 2012). "Cocaine intoxication". Critical Care Clinics. 28 (4): 517–26. doi:10.1016/j.ccc.2012.07.003. PMID 22998988.
  12. ^ "Cocaine topical (C-Topical Solution) Use During Pregnancy". 10 April 2020. Retrieved 30 April 2020.
  13. ^ a b c d e f g h i j k l m Pomara C, Cassano T, D'Errico S, Bello S, Romano AD, Riezzo I, Serviddio G (2012). "Data available on the extent of cocaine use and dependence: biochemistry, pharmacologic effects and global burden of disease of cocaine abusers". Current Medicinal Chemistry. 19 (33): 5647–57. doi:10.2174/092986712803988811. PMID 22856655.
  14. ^ Connors NJ, Hoffman RS (November 2013). "Experimental treatments for cocaine toxicity: a difficult transition to the bedside". The Journal of Pharmacology and Experimental Therapeutics. 347 (2): 251–7. doi:10.1124/jpet.113.206383. PMID 23978563. S2CID 6767268.
  15. ^ Harper SJ, Jones NS (October 2006). "Cocaine: what role does it have in current ENT practice? A review of the current literature". The Journal of Laryngology and Otology. 120 (10): 808–11. doi:10.1017/s0022215106001459. PMID 16848922. S2CID 28169472.
  16. ^ Sordo L, Indave BI, Barrio G, Degenhardt L, de la Fuente L, Bravo MJ (September 2014). "Cocaine use and risk of stroke: a systematic review". Drug and Alcohol Dependence. 142: 1–13. doi:10.1016/j.drugalcdep.2014.06.041. PMID 25066468.
  17. ^ a b Goldstein RA, DesLauriers C, Burda AM (January 2009). "Cocaine: history, social implications, and toxicity--a review". Disease-A-Month. 55 (1): 6–38. doi:10.1016/j.disamonth.2008.10.002. PMID 19081448.
  18. ^ Sharma HS, Muresanu D, Sharma A, Patnaik R (2009). "Cocaine-induced breakdown of the blood-brain barrier and neurotoxicity". International Review of Neurobiology. 88: 297–334. doi:10.1016/S0074-7742(09)88011-2. ISBN 978-0-12-374504-0. PMID 19897082.
  19. ^ Karch SB (2009). Karch's pathology of drug abuse (4 ed.). Boca Raton: CRC Press. p. 70. ISBN 978-0-8493-7881-2. Archived from the original on 10 September 2017.
  20. ^ Narcotic Drugs 2014 (PDF). International Narcotics Control Board. 2015. p. 21. ISBN 9789210481571. Archived (PDF) from the original on 2 June 2015.
  21. ^ Karila L, Zarmdini R, Petit A, Lafaye G, Lowenstein W, Reynaud M (January 2014). "[Cocaine addiction: current data for the clinician]". Presse Médicale. 43 (1): 9–17. doi:10.1016/j.lpm.2013.01.069. PMID 23727012.
  22. ^ GBD 2013 Mortality Causes of Death Collaborators (January 2015). "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013". Lancet. 385 (9963): 117–71. doi:10.1016/S0140-6736(14)61682-2. PMC 4340604. PMID 25530442.
  23. ^ Martin, Richard T. (October 1970). "The role of coca in the history, religion, and medicine of South American Indians". Economic Botany. 24 (4): 422–438. doi:10.1007/BF02860746. S2CID 34523519.
  24. ^ Plant, Tracie; Aref-Adib, Golnar (June 2008). "Travelling to new heights: practical high altitude medicine". British Journal of Hospital Medicine. 69 (6): 348–352. doi:10.12968/hmed.2008.69.6.29626. PMID 18646420.
  25. ^ Room R, Reuter P (January 2012). "How well do international drug conventions protect public health?". Lancet. 379 (9810): 84–91. doi:10.1016/s0140-6736(11)61423-2. PMID 22225673. S2CID 23386203. The international treaties have also constrained national policy experimentation because they require nation states to criminalise drug use