Perception

The Necker cube and Rubin vase can be perceived in more than one way.
Humans are able to have a very good guess on the underlying 3D shape category/identity/geometry given a silhouette of that shape. Computer vision researchers have been able to build computational models for perception that exhibit a similar behavior and are capable of generating and reconstructing 3D shapes from single or multi-view depth maps or silhouettes.[1]

Perception (from Latin perceptio 'gathering, receiving') is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information or environment.[2] All perception involves signals that go through the nervous system, which in turn result from physical or chemical stimulation of the sensory system.[3] Vision involves light striking the retina of the eye; smell is mediated by odor molecules; and hearing involves pressure waves.

Perception is not only the passive receipt for of these signals, but it is also shaped by the recipient's learning, memory, expectation, and attention.[4][5] Sensory input is a process that transforms this low-level information to higher-level information (e.g., extracts shapes for object recognition).[5] The process that follows connects a person's concepts and expectations (or knowledge), restorative and selective mechanisms (such as attention) that influence perception.

Perception depends on complex functions of the nervous system, but subjectively seems mostly effortless because this processing happens outside conscious awareness.[3] Since the rise of experimental psychology in the 19th century, psychology's understanding of perception has progressed by combining a variety of techniques.[4] Psychophysics quantitatively describes the relationships between the physical qualities of the sensory input and perception.[6] Sensory neuroscience studies the neural mechanisms underlying perception. Perceptual systems can also be studied computationally, in terms of the information they process. Perceptual issues in philosophy include the extent to which sensory qualities such as sound, smell or color exist in objective reality rather than in the mind of the perceiver.[4]

Although people traditionally viewed the senses as passive receptors, the study of illusions and ambiguous images has demonstrated that the brain's perceptual systems actively and pre-consciously attempt to make sense of their input.[4] There is still active debate about the extent to which perception is an active process of hypothesis testing, analogous to science, or whether realistic sensory information is rich enough to make this process unnecessary.[4]

The perceptual systems of the brain enable individuals to see the world around them as stable, even though the sensory information is typically incomplete and rapidly varying. Human and other animal brains are structured in a modular way, with different areas processing different kinds of sensory information. Some of these modules take the form of sensory maps, mapping some aspect of the world across part of the brain's surface. These different modules are interconnected and influence each other. For instance, taste is strongly influenced by smell.[7]

  1. ^ "Soltani, A. A., Huang, H., Wu, J., Kulkarni, T. D., & Tenenbaum, J. B. Synthesizing 3D Shapes via Modeling Multi-View Depth Maps and Silhouettes With Deep Generative Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1511-1519)". GitHub. 28 May 2019. Archived from the original on 9 May 2018.
  2. ^ Schacter, Daniel (2011). Psychology. Worth Publishers. ISBN 9781429237192.
  3. ^ a b Goldstein (2009) pp. 5–7
  4. ^ a b c d e Gregory, Richard. "Perception" in Gregory, Zangwill (1987) pp. 598–601.
  5. ^ a b Bernstein, Douglas A. (5 March 2010). Essentials of Psychology. Cengage Learning. pp. 123–124. ISBN 978-0-495-90693-3. Archived from the original on 2 January 2017. Retrieved 25 March 2011.
  6. ^ Gustav Theodor Fechner. Elemente der Psychophysik. Leipzig 1860.
  7. ^ DeVere, Ronald; Calvert, Marjorie (31 August 2010). Navigating Smell and Taste Disorders. Demos Medical Publishing. pp. 33–37. ISBN 978-1-932603-96-5. Archived from the original on 9 November 2011. Retrieved 26 March 2011.