Exponential function

Exponential
The natural exponential function along part of the real axis
The natural exponential function along part of the real axis
General information
General definition
Domain, codomain and image
Domain
Image
Specific values
At zero1
Value at 1e
Specific features
Fixed pointWn(−1) for
Related functions
Reciprocal
InverseNatural logarithm, Complex logarithm
Derivative
Antiderivative
Series definition
Taylor series
Exponential functions with bases 2 and 1/2

The exponential function is a mathematical function denoted by or (where the argument x is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the operation of taking powers of a number (repeated multiplication), but various modern definitions allow it to be rigorously extended to all real arguments , including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to consider the exponential function to be "the most important function in mathematics".[1]

The functions for positive real numbers are also known as exponential functions, and satisfy the exponentiation identity:

This implies (with factors) for positive integers , where , relating exponential functions to the elementary notion of exponentiation. The natural base is a ubiquitous mathematical constant called Euler's number. To distinguish it, is called the exponential function or the natural exponential function: it is the unique real-valued function of a real variable whose derivative is itself and whose value at 0 is 1:

for all , and

The relation for and real or complex allows general exponential functions to be expressed in terms of the natural exponential.

More generally, especially in applied settings, any function defined by

is also known as an exponential function, as it solves the initial value problem , meaning its rate of change at each point is proportional to the value of the function at that point. This behavior models diverse phenomena in the biological, physical, and social sciences, for example the unconstrained growth of a self-reproducing population, the decay of a radioactive element, the compound interest accruing on a financial fund, or a growing body of manufacturing expertise.

The real exponential function can also be defined as a power series, which is readily extended to complex arguments to define the complex exponential function . This function takes on all complex values except for 0 and is closely related to the complex trigonometric functions, as shown by Euler's formula:

Motivated by its more abstract properties and characterizations, the exponential function can be generalized to much larger contexts such as square matrices and Lie groups. Even further, the differential equation definition can be generalized to a Riemannian manifold.

The real exponential function is a bijection from to the interval .[2] Its inverse function is the natural logarithm, denoted ,[nb 1] ,[nb 2] or , and some old texts[3] called it the antilogarithm.

  1. ^ Cite error: The named reference Rudin_1987 was invoked but never defined (see the help page).
  2. ^ Meier, John; Smith, Derek (2017-08-07). Exploring Mathematics. Cambridge University Press. p. 167. ISBN 978-1-107-12898-9.
  3. ^ Cite error: The named reference Durell_1911 was invoked but never defined (see the help page).


Cite error: There are <ref group=nb> tags on this page, but the references will not show without a {{reflist|group=nb}} template (see the help page).