Avogadro's law

Avogadro's law (sometimes referred to as Avogadro's hypothesis or Avogadro's principle) or Avogadro-Ampère's hypothesis is an experimental gas law relating the volume of a gas to the amount of substance of gas present.[1] The law is a specific case of the ideal gas law. A modern statement is:

Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules."[1]

For a given mass of an ideal gas, the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are constant.

The law is named after Amedeo Avogadro who, in 1812,[2][3] hypothesized that two given samples of an ideal gas, of the same volume and at the same temperature and pressure, contain the same number of molecules. As an example, equal volumes of gaseous hydrogen and nitrogen contain the same number of molecules when they are at the same temperature and pressure, and observe ideal gas behavior. In practice, real gases show small deviations from the ideal behavior and the law holds only approximately, but is still a useful approximation for scientists.

  1. ^ a b "Avogadro's law". Encyclopædia Britannica. Retrieved 3 February 2016.
  2. ^ Avogadro, Amedeo (1810). "Essai d'une manière de déterminer les masses relatives des molécules élémentaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons". Journal de Physique. 73: 58–76. English translation
  3. ^ "Avogadro's law". Merriam-Webster Medical Dictionary. Retrieved 3 February 2016.