Algorithmically random sequence

Intuitively, an algorithmically random sequence (or random sequence) is a sequence of binary digits that appears random to any algorithm running on a (prefix-free or not) universal Turing machine. The notion can be applied analogously to sequences on any finite alphabet (e.g. decimal digits). Random sequences are key objects of study in algorithmic information theory.

In measure-theoretic probability theory, introduced by Andrey Kolmogorov in 1933, there is no such thing as a random sequence. For example, consider flipping a fair coin infinitely many times. Any particular sequence, be it or , has equal probability of exactly zero. There is no way to state that one sequence is "more random" than another sequence, using the language of measure-theoretic probability. However, it is intuitively obvious that looks more random than . Algorithmic randomness theory formalizes this intuition.

As different types of algorithms are sometimes considered, ranging from algorithms with specific bounds on their running time to algorithms which may ask questions of an oracle machine, there are different notions of randomness. The most common of these is known as Martin-Löf randomness (K-randomness or 1-randomness), but stronger and weaker forms of randomness also exist. When the term "algorithmically random" is used to refer to a particular single (finite or infinite) sequence without clarification, it is usually taken to mean "incompressible" or, in the case the sequence is infinite and prefix algorithmically random (i.e., K-incompressible), "Martin-Löf–Chaitin random".

Since its inception, Martin-Löf randomness has been shown to admit many equivalent characterizations—in terms of compression, randomness tests, and gambling—that bear little outward resemblance to the original definition, but each of which satisfy our intuitive notion of properties that random sequences ought to have: random sequences should be incompressible, they should pass statistical tests for randomness, and it should be difficult to make money betting on them. The existence of these multiple definitions of Martin-Löf randomness, and the stability of these definitions under different models of computation, give evidence that Martin-Löf randomness is a fundamental property of mathematics and not an accident of Martin-Löf's particular model.

It is important to disambiguate between algorithmic randomness and stochastic randomness. Unlike algorithmic randomness, which is defined for computable (and thus deterministic) processes, stochastic randomness is usually said to be a property of a sequence that is a priori known to be generated by (or is the outcome of) an independent identically distributed equiprobable stochastic process.

Because infinite sequences of binary digits can be identified with real numbers in the unit interval, random binary sequences are often called (algorithmically) random real numbers. Additionally, infinite binary sequences correspond to characteristic functions of sets of natural numbers; therefore those sequences might be seen as sets of natural numbers.

The class of all Martin-Löf random (binary) sequences is denoted by RAND or MLR.