Resonant inductive coupling

Diagram of the most basic resonant inductive coupling wireless power transfer system.[1] This is called 2nd-resonance technology.[2]
Diagram of the "WiTricity" resonant inductive wireless power system demonstrated by Marin Soljačić's MIT team in 2007. The resonant circuits were coils of copper wire which resonated with their internal capacitance (dotted capacitors) at 10 MHz. Power was coupled into the transmitter resonator, and out of the receiver resonator into the rectifier, by small coils which also served for impedance matching. In this regard, MIT researchers believe they discovered a new way to wirelessly transfer power using non-radiative electromagnetic energy resonant tunneling.[3]

Resonant inductive coupling or magnetic phase synchronous coupling[4][5] is a phenomenon with inductive coupling in which the coupling becomes stronger when the "secondary" (load-bearing) side of the loosely coupled coil resonates.[5] A resonant transformer of this type is often used in analog circuitry as a bandpass filter. Resonant inductive coupling is also used in wireless power systems for portable computers, phones, and vehicles.

  1. ^ resonant structure in only the secondary side
  2. ^ High efficiency is realized by using the secondary side resonance technology. Techno Frontier 2017 OMRON AMUSEMENT Japan
  3. ^ Sagolsem Kripachariya Singh; T. S. Hasarmani; R. M. Holmukhe (April 2012). "Wireless Transmission of Electrical Power Overview of Recent Research & Development" (PDF). International Journal of Computer and Electrical Engineering. 4 (2): 208. ISSN 1793-8163.
  4. ^ Theory and verification of a model of wireless power transfer having a resonant structure in only the secondary side. IEICE Technical Report WPT2014-89 (in Japanese). Vol. 114. The Institute of Electronics Information and Communication Engineers. 13 February 2015. pp. 7–12. ISSN 2432-6380.
  5. ^ a b "Breakthrough was finally found in the wireless power transfer - Improve efficiency and robustness by slightly modifying the problem of magnetic resonance theory". Green Electronics (in Japanese) (19). CQ publishing: 52–69. October 2017. ISBN 9784789848503.