Deep learning

Representing images on multiple layers of abstraction in deep learning
Representing images on multiple layers of abstraction in deep learning[1]

Deep learning is the subset of machine learning methods based on artificial neural networks (ANNs) with representation learning. The adjective "deep" refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.[2]

Deep-learning architectures such as deep neural networks, deep belief networks, recurrent neural networks, convolutional neural networks and transformers have been applied to fields including computer vision, speech recognition, natural language processing, machine translation, bioinformatics, drug design, medical image analysis, climate science, material inspection and board game programs, where they have produced results comparable to and in some cases surpassing human expert performance.[3][4][5]

Artificial neural networks were inspired by information processing and distributed communication nodes in biological systems. ANNs have various differences from biological brains. Specifically, artificial neural networks tend to be static and symbolic, while the biological brain of most living organisms is dynamic (plastic) and analog.[6][7] ANNs are generally seen as low quality models for brain function.[8]

  1. ^ Schulz, Hannes; Behnke, Sven (1 November 2012). "Deep Learning". KI - Künstliche Intelligenz. 26 (4): 357–363. doi:10.1007/s13218-012-0198-z. ISSN 1610-1987. S2CID 220523562.
  2. ^ LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey (2015). "Deep Learning" (PDF). Nature. 521 (7553): 436–444. Bibcode:2015Natur.521..436L. doi:10.1038/nature14539. PMID 26017442. S2CID 3074096.
  3. ^ Ciresan, D.; Meier, U.; Schmidhuber, J. (2012). "Multi-column deep neural networks for image classification". 2012 IEEE Conference on Computer Vision and Pattern Recognition. pp. 3642–3649. arXiv:1202.2745. doi:10.1109/cvpr.2012.6248110. ISBN 978-1-4673-1228-8. S2CID 2161592.
  4. ^ Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey (2012). "ImageNet Classification with Deep Convolutional Neural Networks" (PDF). NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada. Archived (PDF) from the original on 2017-01-10. Retrieved 2017-05-24.
  5. ^ "Google's AlphaGo AI wins three-match series against the world's best Go player". TechCrunch. 25 May 2017. Archived from the original on 17 June 2018. Retrieved 17 June 2018.
  6. ^ Marblestone, Adam H.; Wayne, Greg; Kording, Konrad P. (2016). "Toward an Integration of Deep Learning and Neuroscience". Frontiers in Computational Neuroscience. 10: 94. arXiv:1606.03813. Bibcode:2016arXiv160603813M. doi:10.3389/fncom.2016.00094. PMC 5021692. PMID 27683554. S2CID 1994856.
  7. ^ Bengio, Yoshua; Lee, Dong-Hyun; Bornschein, Jorg; Mesnard, Thomas; Lin, Zhouhan (13 February 2015). "Towards Biologically Plausible Deep Learning". arXiv:1502.04156 [cs.LG].
  8. ^ "Study urges caution when comparing neural networks to the brain". MIT News | Massachusetts Institute of Technology. 2022-11-02. Retrieved 2023-12-06.