Laplace transform

In mathematics, the Laplace transform, named after its discoverer Pierre-Simon Laplace (/ləˈplɑːs/), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).

The transform is useful for converting differentiation and integration in the time domain into much easier multiplication and division in the Laplace domain (analogous to how logarithms are useful for simplifying multiplication and division into addition and subtraction). This gives the transform many applications in science and engineering, mostly as a tool for solving linear differential equations[1] and dynamical systems by simplifying ordinary differential equations and integral equations into algebraic polynomial equations, and by simplifying convolution into multiplication.[2][3] Once solved, the inverse Laplace transform reverts to the original domain.

The Laplace transform is defined (for suitable functions f) by the integral:

  1. ^ Lynn, Paul A. (1986). "The Laplace Transform and the z-transform". Electronic Signals and Systems. London: Macmillan Education UK. pp. 225–272. doi:10.1007/978-1-349-18461-3_6. ISBN 978-0-333-39164-8. Laplace Transform and the z-transform are closely related to the Fourier Transform. Laplace Transform is somewhat more general in scope than the Fourier Transform, and is widely used by engineers for describing continuous circuits and systems, including automatic control systems.
  2. ^ "Differential Equations - Laplace Transforms". tutorial.math.lamar.edu. Retrieved 2020-08-08.
  3. ^ Weisstein, Eric W. "Laplace Transform". mathworld.wolfram.com. Retrieved 2020-08-08.