USB-C

USB-C
Pins of the USB-C connector
Type Digital audio / video / data / power – connector
Production history
Designer USB Implementers Forum
Designed 11 August 2014 (published)[1]
Superseded All earlier USB connectors (Type-A and -B, and its different sizes: Standard, Mini, and Micro)
DisplayPort
Mini DisplayPort
Lightning
General specifications
Pins 24
USB-C plug
USB-C (SuperSpeed USB 5Gbps) receptacle on an MSI laptop

USB-C, or USB Type-C, is a 24-pin connector (not a protocol) that supersedes previous USB connectors and can carry audio, video and other data, e.g., to drive multiple displays or to store a backup to an external drive. It can also provide and receive power, such as powering a laptop or a mobile phone. It is applied not only by USB technology, but also by other protocols, including Thunderbolt, PCIe, HDMI, DisplayPort, and others. It is extensible to support future standards.

Design for the USB-C connector was initially developed in 2012 by Apple Inc. and Intel.[2] Type-C Specification 1.0 was published by the USB Implementers Forum (USB-IF) on August 11, 2014.[3] In July 2016, it was adopted by the IEC as "IEC 62680-1-3".[4]

The USB Type-C connector has 24 pins and is reversible.[5][6] The designation "C" is to distinguish it from the various former USB connectors it replaced, all termed either Type-A or Type-B. Whereas earlier every USB cable had a host end A and a peripheral device end B, USB-C replaces both; a USB-C cable connects either way, and for older equipment a legacy cable has a Type-C plug at one end and either a Type-A (host) or a Type-B (peripheral device) plug at the other. The designation "C" refers only to the connector's physical configuration, or form factor, not to be confused with the connector's specific capabilities, such as Thunderbolt 3, DisplayPort 2.0, or USB 3.2 Gen 2x2. Based on the protocols supported by both devices, host and peripheral device, a USB-C connection normally provides (much) higher signaling and therefore data rates than the superseded connectors.

A device with a Type-C connector does not necessarily implement any USB transfer protocol, USB Power Delivery, or any of the Alternate Modes: the Type-C connector is common to several technologies while mandating only a few of them.[7]

USB 3.2, released in September 2017, fully replaced the USB 3.1 specification. It preserves previously called USB 3.1 SuperSpeed and SuperSpeed+ data transfer modes and introduces two additional data transfer modes by newly applying two-lane operations, with signaling rates of 10 Gbit/s (SuperSpeed USB 10Gbps; nominal data rate: 1.212 GB/s) and 20 Gbit/s (SuperSpeed USB 20Gbps; nominal data rate: 2.422 GB/s). They are only applicable with Full-Featured USB-C (connectors and cables) on both ends.

USB4, released in 2019, is the first USB transfer protocol standard that is only available exclusively via USB-C.

  1. ^ Universal Serial Bus Type-C Cable and Connector Specification Revision 1.3 (14 July 2017), Revision History, page 14.
  2. ^ Weintaub, Seth (2015). "Did Apple invent USB Type-C? Maybe a little bit".{{cite news}}: CS1 maint: url-status (link)
  3. ^ "Universal Serial Bus Type-C Cable and Connector Specification" (PDF). USB 3.0 Promoter Group. 2014.
  4. ^ "IEC Formally Adopts USB Type-C, USB Power Delivery and USB 3.1 Specifications" (Press release). 2016-07-13. Archived from the original on 2021-01-30. Retrieved 2022-09-10.
  5. ^ "USB Type-C Cable and Connector : Language Usage Guidelines from USB-IF" (PDF). Usb.org. Archived (PDF) from the original on 2018-11-05. Retrieved 2018-12-15.
  6. ^ Hruska, Joel (2015-03-13). "USB-C vs. USB 3.1: What's the difference?". ExtremeTech. Archived from the original on 2015-04-11. Retrieved 2015-04-09.
  7. ^ "USB Type-C Overview" (PDF). usb.org. USB-IF. 2016-10-20. Archived from the original (PDF) on 2016-12-20.