Back Skaningowy mikroskop termiczny Polish

Scanning thermal microscopy

Schematic and SEM images of a conventional SThM tip based on an Au–Cr thermocouple.[1]
SThM using the N-V center in diamond.
(a) Schematics of experimental setup. An electric current is applied to the arms of an AFM cantilever (phosphorus-doped Si, P:Si) and heats up the end section above the tip (intrinsic Si, i-Si). The bottom lens excites a diamond nanocrystal with a green laser light and collects photoluminescence (PL). The crystal hosts an N-V center and is attached to the AFM tip. A wire on the sample surface serves as the microwave source (mw). The temperature of the cantilever Th is determined from the applied current and voltage.
(b) Optically detected magnetic resonance spectra of the N-V center at three temperatures.
(c) Thermal conductivity image of a gold letter E on sapphire. White circles indicate features that do not correlate with the AFM topography. (d) PL image of the AFM cantilever end and tip where the diamond nanocrystal appears as the bright spot. (e) Zoomed PL image of the N-V center in d.[2]

Scanning thermal microscopy (SThM) is a type of scanning probe microscopy that maps the local temperature and thermal conductivity of an interface. The probe in a scanning thermal microscope is sensitive to local temperatures – providing a nano-scale thermometer. Thermal measurements at the nanometer scale are of both scientific and industrial interest. The technique was invented by Clayton C. Williams and H. Kumar Wickramasinghe in 1986.[3]

  1. ^ Cui, Longji; Jeong, Wonho; Fernández-Hurtado, Víctor; Feist, Johannes; García-Vidal, Francisco J.; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod (2017). "Study of radiative heat transfer in Ångström- and nanometre-sized gaps". Nature Communications. 8. Bibcode:2017NatCo...8.....C. doi:10.1038/ncomms14479. PMC 5330859. PMID 28198467.
  2. ^ Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A. (2015). "Imaging thermal conductivity with nanoscale resolution using a scanning spin probe". Nature Communications. 6: 8954. arXiv:1511.06916. Bibcode:2015NatCo...6.8954L. doi:10.1038/ncomms9954. PMC 4673876. PMID 26584676.
  3. ^ Williams, C. C. and Wickramasinghe, H. K. (1986). "Scanning thermal profiler". Appl. Phys. Lett. 49 (23): 1587–1589. Bibcode:1986ApPhL..49.1587W. doi:10.1063/1.97288.{{cite journal}}: CS1 maint: multiple names: authors list (link)