Back

This article needs additional citations for verification. (June 2009) (Learn how and when to remove this template message) |

**Random number generation** (**RNG**) is a process which, through a device, generates a sequence of numbers or symbols that cannot be reasonably predicted better than by a random chance. Random number generators can be true *hardware random-number generators* (HRNGS), which generate random numbers as a function of current value of some physical environment attribute that is constantly changing in a manner that is practically impossible to model, or pseudo-random number generators (PRNGS), which generate numbers that look random, but are actually deterministic, and can be reproduced if the state of the PRNG is known.

Various applications of randomness have led to the development of several different methods for generating random data, of which some have existed since ancient times, among whose ranks are well-known "classic" examples, including the rolling of dice, coin flipping, the shuffling of playing cards, the use of yarrow stalks (for divination) in the I Ching, as well as countless other techniques. Because of the mechanical nature of these techniques, generating large quantities of sufficiently random numbers (important in statistics) required much work and time. Thus, results would sometimes be collected and distributed as random number tables.

Several computational methods for pseudo-random number generation exist. All fall short of the goal of true randomness, although they may meet, with varying success, some of the statistical tests for randomness intended to measure how unpredictable their results are (that is, to what degree their patterns are discernible). This generally makes them unusable for applications such as cryptography. However, carefully designed *cryptographically secure pseudo-random number generators* (CSPRNGS) also exist, with special features specifically designed for use in cryptography.