Construction 3D printing

Construction 3D Printing (c3Dp) or 3D construction Printing (3DCP) refers to various technologies that use 3D printing as a core method to fabricate buildings or construction components. Alternative terms are also in use, such as additive construction,[1][2] Autonomous Robotic Construction System (ARCS),[3] Large scale Additive Manufacturing (LSAM), or Freeform construction (FC), also to refer to sub-groups, such as '3D Concrete', used to refer to concrete extrusion technologies. There are a variety of 3D printing methods used at construction scale, with the main ones being extrusion (concrete/cement, wax, foam, polymers), powder bonding (polymer bond, reactive bond, sintering), and additive welding. 3D printing at a construction scale will have a wide variety of applications within the private, commercial, industrial and public sectors. Potential advantages of these technologies include faster construction, lower labor costs, increased complexity and/or accuracy, greater integration of function, and less waste produced.

A number of different approaches have been demonstrated to date, which include on-site and off-site fabrication of buildings and construction components, using industrial robots, gantry systems and tethered autonomous vehicles. Demonstrations of construction 3D printing technologies to date have included fabrication of housing, construction components (cladding and structural panels and columns), bridges and civil infrastructure,[4][5] artificial reefs, follies, and sculptures.

The technology has seen a significant increase in popularity in recent years with many new companies, including some backed by prominent names from the construction industry and academia. This led to several important milestones, such as the first 3D printed building, the first 3D printed bridge, the first 3D printed part in a public building, the first living 3D printed building in Europe and CIS[citation needed], and the first 3D printed building in Europe fully approved by the authorities (COBOD International), among many others.

  1. ^ Labonnote, Nathalie; Rønnquist, Anders; Manum, Bendik; Rüther, Petra (December 2016). "Additive construction: State-of-the-art, challenges and opportunities". Automation in Construction. 72: 347–366. doi:10.1016/j.autcon.2016.08.026.
  2. ^ Kreiger, Eric L.; Kreiger, Megan A.; Case, Michael P. (August 2019). "Development of the construction processes for reinforced additively constructed concrete". Additive Manufacturing. 28: 39–49. doi:10.1016/j.addma.2019.02.015.
  3. ^ Sisson, Patrick (8 January 2019). "Can this startup 3D-print a home in 30 hours?". Curbed.
  4. ^ "World's First 3D Printed Bridge Opens in Spain". ArchDaily. 7 February 2017.
  5. ^ France-Presse, Agence (18 October 2017). "World's first 3D-printed bridge opens to cyclists in Netherlands". The Guardian.